Why nonlocal recursion operators produce local symmetries : new results and applications
نویسنده
چکیده
It is well known that integrable hierarchies in (1+1) dimensions are local while the recur-sion operators that generate them usually contain nonlocal terms. We resolve this apparent discrepancy by providing simple and universal sufficient conditions for a (nonlocal) recursion operator in (1+1) dimensions to generate a hierarchy of local symmetries. These conditions are satisfied by virtually all known today recursion operators and are much easier to verify than those found in earlier work. We also give explicit formulas for the nonlocal parts of higher recursion operators, Poisson and symplectic structures of integrable systems in (1+1) dimensions. Using these two results we prove, under some natural assumptions, the Maltsev–Novikov conjecture stating that higher Hamiltonian, symplectic and recursion operators of integrable systems in (1+1) dimensions are weakly nonlocal, i.e., the coefficients of these operators are local and these operators contain at most one integration operator in each term.
منابع مشابه
On recursion operators and nonlocal symmetries of evolution equations
We consider the recursion operators with nonlocal terms of special form for evolution systems in (1+1) dimensions, and extend them to well-defined operators on the space of nonlocal symmetries associated with the so-called universal Abelian coverings over these systems. The extended recursion operators are shown to leave this space invariant. These results apply, in particular, to the recursion...
متن کاملOn recursion operators and nonlocal symmetries of evolution equations1
We consider the recursion operators with nonlocal terms of special form for evolution systems in (1 + 1) dimensions, and extend them to well-defined operators on the space of nonlocal symmetries associated with the so-called universal Abelian coverings over these systems. The extended recursion operators are shown to leave this space invariant. These results apply, in particular, to the recursi...
متن کاملThe D-boussinesq Equation: Hamiltonian and Symplectic Structures; Noether and Inverse Noether Operators
Using new methods of analysis of integrable systems,based on a general geometric approach to nonlinear PDE,we discuss the Dispersionless Boussinesq Equation, which is equivalent to the Benney-Lax equation,being a system of equations of hydrodynamical type. The results include: a description of local and nonlocal Hamiltonian and symplectic structures, hierarchies of symmetries, hierarchies of co...
متن کاملLocality of symmetries generated by nonhereditary, inhomogeneous, and time-dependent recursion operators: a new application for formal symmetries
Using the methods of the theory of formal symmetries, we obtain new easily verifiable sufficient conditions for a recursion operator to produce a hierarchy of local generalized symmetries. An important advantage of our approach is that under certain mild assumptions it allows to bypass the cumbersome check of hereditariness of the recursion operator in question, what is particularly useful for ...
متن کاملA Geometric Study of the Dispersionless Boussinesq Type Equation
We discuss the dispersionless Boussinesq type equation, which is equivalent to the Benney–Lax equation, being a system of equations of hydrodynamical type. This equation was discussed in [4]. The results include: A description of local and nonlocal Hamiltonian and symplectic structures, hierarchies of symmetries, hierarchies of conservation laws, recursion operators for symmetries and generatin...
متن کامل